cho \(x+y+z=x^2+y^2+z^2=x^3+y^3+z^3=1\)
tinh gia tri cua\(x^{2009}+y^{2011}+z^{2013}\)
Cho 3 số x, y ,z khác 0 thỏa:
x+y+z= 1/2
1/x2 +1/y2 + 1/z2 + 1/xyz = 4
1/x + 1/y + 1/z > 0
Tính giá trị của P = (y2009 + z2009)(z2011 + x2011)(x2013 + y2013)
cho x+y+z=1, x^2+y^2+z^2=1, x^3+y^3+z^3=1 tính x^2009+y^2010+z^2011
cho x+y+z=1, x2+y2+z2=1, x3+y3+z3=1
Tinh gia tri bieu thuc: P = x2007+ y2007+ z2007
Cho x,y,z la 3 so khac 0 va x+y+z=0. Tinh gia tri bieu thuc:
(xy/x^2+y^2-z^2) + ( xz/x^2+z^2-yy^2) + (yz/y^2+z^2-x^2)
Cho x,y,z la 3 so thoa man x.y.z=1; x+y+z=1/x+1/y+1?z
Tinh gia tri cua bieu thuc:P=(x^15-1)(y^3-1)(z^2021-1)
tinh gia tri bieu thuc M= 1/ y^2 + z^2 - x^2 + 1/x^2 + y^2 -z^2 + 1/ x^2 + z ^2 - y^2 biet x + y + z = 0
cho x+y+z=2016 tinh gia tri A=( xy+2016 z)(yz+2016x)(zx+2016y)/(x+y)^2(y+z)^2(z+x)^2
chung minh rang khong co gia tri nguyen nao cua x,y,z thoa man :x^3+y^3+x^3=x+y+z+2009