Áp dụng dãy tỉ số bằng nhau ta có:
x/(y+z+t) = y/(x+z+t)=z/(x+y+t)=t/(y+z+x)= (x+y+z+t)/3(x+y+z+t)=1/3
=> 3x = y+z+t
3y= x+z+t
3z= x+y+t
3t= x+y+z
Cộng các đẳng thức trên vế theo vế ta suy ra:
x+y+z+t = 0
=> x+ y=-(z+t) ; y+z=-(x+t); z+t=-(x+y); t+x=-(z+y)
Thế vào P ta được: P = -(z+t)/(z+t) -(t+x)/(t+x) - (x+y)/(x+y) - (z+y)/(z+y) = -4