Cho 3 số x; y; z khác 0 thỏa mãn: \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=1\)
Tính giá trị của biểu thức P = \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
cho các số x, y, z thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2015\) tìm MAX P =\(\frac{x+y}{x^2+y^2}+\frac{y+z}{y^2+z^2}+\frac{z+x}{z^2+x^2}\)
Cho các số thực dương x,y,z thỏa mãn x+y+z=3
Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\)
Cho x,y,z thỏa mãn:
x+y+z=7 và \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=3\)
Tính giá trị của biểu thức:Q=\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Cho x,y,z là các số thực dương thỏa mãn \(x^2+y^2+z^2=3\).TIm GTNN của biểu thức \(A=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}-\frac{1}{x+y+z}\)
Cho 3 số dương x,y,z thỏa mãn x+y+z=2. tìm GTNN của biểu thức : P = \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
cho x ,y,z khác 0 thỏa mãn x+y+z=0 Tính giá trị của biểu thức M=\(\frac{1}{x^2+y^2-z^2}+\frac{1}{y^2+z^2-x^2}+\frac{1}{x^2+z^2-y^2}\)
Cho các số thực x,y,z thỏa mãn \(x+y+z=1\) và \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\)1 Gía trị của biểu thức \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
cho x,y,z là các số dương thỏa mãn \(x^2+y^2+z^2=1\).chứng minh:
\(\frac{x}{y^2+z^2}+\frac{y}{z^2+x^2}+\frac{z}{x^2+y^2}\ge\frac{3\sqrt{3}}{2}\)