Cho x, y, z là các số dương thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{16}{x+y+z}\). Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)
Cho x , y , z > 0 , x + y + z = 3 . Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
cho x, y, z là 3 số thực dương thỏa mãn x+y+z=2
tìm giá trị nhỏ nhất của biểu thức: \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Cho 3 số thực x, y, z thỏa mãn \(x^2+y^2+z^2=3\). Tìm giá trị nhỏ nhất của biểu thức :
\(M=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}-\frac{1}{x+y+z}\)
Cho 3 số x,y,z >1 và x+y+z=xyz.
Tìm giá trị nhỏ nhất của biểu thức: \(M=\frac{y-2}{x^2}+\frac{z-2}{y^2}+\frac{x-2}{z^2}.\)
Cho x; y; z là các số nguyên thỏa mãn điều kiện: \(\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}=3\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: \(P=x^3+y^3+z^3.\)
Cho 3 số dương x,y,z thỏa mãn x+2y+3z=20. Tìm giá trị nhỏ nhất của biểu thức \(M=x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)
Cho x,y,z là các số dương thỏa mãn xyz=1
Tìm giá trị nhỏ nhất của biểu thức \(E=\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)
Cho x, y, z là 3 số thực dương. Tìm giá trị nhỏ nhất của biểu thức: \(\frac{\sqrt{x^2-xy+y^2}}{x+y+2z}+\frac{\sqrt{y^2-yz+z^2}}{y+z+2x}+\frac{\sqrt{z^2-zx+x^2}}{z+x+2y}\)