cho x+y+z=3
tìm minM: x4+y4+z4+12(1-x)(1-y)(1-z)
cho x+y+z=3.Tính GTNN của P=x4+y4+z4+12(1-x)(1-y)(1-z)
Cho x>y>z.CMR:(x-y)^3+(y-z)^3+(z-x)^3<0.
Cho x>y>z.CMR(x-y)^3+(y-z)^3+(z-x)^3<0
Cho A = (x+y+z)^3-x^3-y^3-z^3 với x,y,z thuộc Z.CMR A chia hết cho 6
cho biểu thức: A= 4x(x+y)(x+y+z)(x+z)+y2z2
CM: A luôn lớn hơn hoặc bằng 0 với mọi x,y,z
Cmr A= x^4(x-z)+y^4(z-x)+z^4(x-y) >0 với mọi x>y>z
. Bài 1:Tìm x
a; x.(x-4)+x-4=0
b; x.(x-4)=2x-8
c; (2x+3).(x-1)+(2x-3).(1-x)=0
d; (x+1).(6x^2+2x)+(x-1).(6x^2+2x)=0
. Bài 2:Tính giá trị biểu thức
a; A=x.(2y-z)-2y.(z-2y) với x=2,y=1/2,z= -1
b; B=x.(y-x)+y.(x-y) với x=13,y=3
c; C=x.(x+y)-5x-5y với x=33/5,y=12/5
. Bài 3
a; CMR: n^2.(n+1)+2n.(n+1) chia hết cho 6 với mọi n thuộc Z
b; CMR: 24^n+1 - 24^n chia hết cho 23 với mọi n thuộc N
c; CMR: (2^n-1)^2 - 2^n+1 chia hết cho 8 với mọi n thuộc Z
. Bài 4: CMR: m^3 - m chia hết cho 6 với mọi m thuộc Z
CMR: x/x+1 +y/y+1+z/z+1 bé hơn hoặc bằng 3/4 với mọi x,y,z>0; x+y+z=1