Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thị Hương Đoàn

Cho x,y,z>2 tm: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\). CMR: \(\left(x-2\right)\left(y-2\right)\left(z-2\right)\le1\)

Kiệt Nguyễn
24 tháng 5 2020 lúc 21:54

Đặt \(\hept{\begin{cases}a=x-2\\b=y-2\\c=z-2\end{cases}}\left(a,b,c>0\right)\)

Lúc đó giả thiết được viết lại thành \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=1\)và ta cần chứng minh \(abc\le1\)

Ta có: \(\frac{1}{a+2}=1-\frac{1}{b+2}-\frac{1}{c+2}=\frac{1}{2}-\frac{1}{b+2}+\frac{1}{2}-\frac{1}{c+2}\)

\(=\frac{b}{2\left(b+2\right)}+\frac{c}{2\left(c+2\right)}\ge2\sqrt{\frac{bc}{4\left(b+2\right)\left(c+2\right)}}\)(Theo bất đẳng thức Cauchy cho 2 số dương) (1)

Hoàn toàn tương tự: \(\frac{1}{b+2}\ge2\sqrt{\frac{ca}{4\left(c+2\right)\left(a+2\right)}}\)(2) ; \(\frac{1}{c+2}\ge2\sqrt{\frac{ab}{4\left(a+2\right)\left(b+2\right)}}\)(3)

Nhân theo vế 3 bất đẳng thức (1), (2), (3), ta được:

\(\frac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\frac{abc}{\sqrt{\left(a+2\right)^2\left(b+2\right)^2\left(c+2\right)^2}}\)

\(\Leftrightarrow\frac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\frac{abc}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\Leftrightarrow abc\le1\)(đpcm)

Đẳng thức xảy ra khi \(x=y=z=3\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
camcon
Xem chi tiết
Nguyễn Vũ Thắng
Xem chi tiết
Aeris
Xem chi tiết
Nguyen Khanh Huyen
Xem chi tiết
Bùi Đức Anh
Xem chi tiết
laughtpee
Xem chi tiết
Tuyển Trần Thị
Xem chi tiết
Nguyễn Nhật Minh
Xem chi tiết
Trần ngô hạ uyên
Xem chi tiết