Áp dụng Bđt \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Ta có:
\(A^2\le6\left(x+y+z\right)=6\)
\(\Leftrightarrow A\le\sqrt{6}\)(Đpcm)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Áp dụng Bđt \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Ta có:
\(A^2\le6\left(x+y+z\right)=6\)
\(\Leftrightarrow A\le\sqrt{6}\)(Đpcm)
Cho x,y,z \(\ge\) 0 thỏa x+y+z=1.
Chứng minh A=\(\sqrt{x+y}+\sqrt{y+z}+\sqrt{x+z}\le\sqrt{6}\).
cho x,y,z>=0 và x+y+z=1. cmr: \(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\le\sqrt{6}\)
Cho x,y,z>0 va x+y+z=1. CMR
\(A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\le\sqrt{6}\)
Cho ba số không âm x,y,z thỏa mãn điều kiện x+y+z=1. Chưngs minh rằng
\(A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\le\sqrt{6}\)
Cho x;y;z >0 thỏa mãn x+y+z=1. CMR:
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\le\frac{\left(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}\right)\sqrt{xyz}+6\left(x^4+y^4+z^4\right)}{2xyz}\)
Cho x, y, z > 0
Chứng minh :
\(\sqrt{x\left(y+1\right)}+\sqrt{y\left(z+1\right)}+\sqrt{z\left(x+1\right)}\le\frac{3}{2}\sqrt{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
Cho ba số x, y, z>0. Chứng minh rằng:
\(\frac{2}{x+\sqrt{yz}}+\frac{2}{y+\sqrt{zx}}+\frac{2}{z+\sqrt{xy}}\le\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{xyz}}\)
Cho x , y , z > 0
Chứng minh rằng
\(\frac{2\sqrt{x}}{x^3+y^2}+\frac{2\sqrt{y}}{y^3+z^2}+\frac{2\sqrt{z}}{z^3+x^2}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Cho x , y , z > 0
Chứng minh rằng : \(\frac{2\sqrt{x}}{x^3+y^2}+\frac{2\sqrt{y}}{y^3+z^2}+\frac{2\sqrt{x}}{z^3+x^2}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)