Cho x,y,z>0 và x+y+xyz=z. Tìm Max P= \(\frac{x}{\sqrt{x^2+1}}+\frac{y}{\sqrt{y^2+1}}+\frac{z}{\sqrt{z^2}+1}\)
\(xyz>0;x+y+z=\dfrac{1}{2}\). tìm max \(P=\dfrac{x}{\sqrt{x+2yx}}+\dfrac{y}{\sqrt{y+2zx}}+\dfrac{z}{\sqrt{z+2xy}}\)
Cho x y z > 0 và xyz=8. Tìm Max của \(P=\frac{x-2}{x+1}+\frac{y-2}{y+1}+\frac{z-2}{z+1}\)
M=xyz(x+y)(z+x)(y+z)
x>0;y>0;z>0
x+y+z=2
Max của M=?
1. Cho x,y,z >0 t/m: \(\dfrac{1}{1+x}+\dfrac{1}{1+y}+\dfrac{1}{1+z}=2\)
Tìm max (xyz)
2. Cho \(2x^2+y^2-2xy=1\)
a) CM: |x| ≤ 1
b) Tìm max \(P=4x^4+4y^4-2x^2y^2\)
Cho x;y;z > 0 thỏa xyz = 1
Tìm max \(A=\left(\frac{2}{\sqrt{x}}-z\right)\left(\frac{2}{\sqrt{y}}-x\right)\left(\frac{2}{\sqrt{z}}-y\right)\)
Cho xyz = 6 ( x, y, z >0 )
Tìm Max \(\frac{1}{x^4\left(y+1\right)\left(z+1\right)}+...\)
cho x, y, z>0 và xyz=1
Tìm gtnn của P=(x+y)(y+z)(z+x)-2(x+y+z)
Cho x,y,z > 0 và x+y+z =1 Tìm min A = (x+y+z)/xyz