(x/ 1+x+xy)+ (y/ 1+y+yz) + ( z/ 1+z+zx)
\(=\frac{1}{\left(yz+1+y\right)}+\frac{y}{\left(1+y+yz\right)}+\frac{yz}{\left(y+yz+xyz\right)}\)
\(=\frac{1}{\left(yz+1+y\right)}+\frac{y}{\left(1+y+yz\right)}+\frac{yz}{\left(y+yz+1\right)}\)
\(=\frac{\left(1+y+yz\right)}{\left(y+yz+1\right)}=1\)
Vậy (x/ 1+x+xy)+ (y/ 1+y+yz) + ( z/ 1+z+zx)=1(Đpcm)