Cho x;y;z>0.CMR:\(\frac{\sqrt{x^2+2y^2}}{z}+\frac{\sqrt{y^2+2z^2}}{x}+\frac{\sqrt{z^2+2x^2}}{y}\ge\sqrt{3}\)
Need some helps!
1. Cho x, y, z > 0 tm \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) CMR:
\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)
2. Cho a, b, c > 0 tm a + b + c = 1. Tìm GTNN của bt sau
\(P=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
Cho x, y, z > 0. Tìm GTLN của \(A=\frac{\sqrt{xy}}{z+2\sqrt{xy}}+\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{zx}}{y+2\sqrt{zx}}\)
cho x;y;z dương sao cho: \(xy+yz+zx\ge\frac{1}{\sqrt{x^2+y^2+z^2}}.CMR:x+y+z\ge\sqrt{3}\)
Cho các số dương x,y,z thỏa mãn: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Tìm giá trị lớn nhất biểu thức \(Q=\frac{x}{\sqrt{yz\left(1+x^2\right)}}+\frac{y}{\sqrt{zx\left(1+y^2\right)}}+\frac{z}{\sqrt{xy\left(1+z^2\right)}}\)
cho cac si thuc duong x,y,z thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
tìm Max của P=\(\frac{1}{\sqrt{2x^2+y^2+3}}+\frac{1}{\sqrt{2y^2+z^2+3}}+\frac{1}{\sqrt{2z^2+x^2+3}}\)
cho x+y+z=1 CMR : \(\sqrt{\frac{xy}{z+xy}}+\sqrt{\frac{yz}{x+yz}}+\sqrt{\frac{xz}{y+xz}}\le\frac{3}{2}\)
Cho x+y+z =1 CMR \(\sqrt{\frac{xy}{z-xy}}+\sqrt{\frac{yz}{x-yz}}+\sqrt{\frac{xz}{y-xz}}\le\frac{3}{2}\)
Khẩn !!!!!
Cho a,b,c>0 CMR:
\(\frac{\left(x+y+z\right)^2}{2}\ge x\sqrt{yz}+y\sqrt{zx}+z\sqrt{xy}\)