\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{k}.Dau"="xayrakhi:x=y=z=\frac{k}{3}\)
shitbo
Chứng minh ra chứ ghi mỗi thế sao đc e
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{k}.Dau"="xayrakhi:x=y=z=\frac{k}{3}\)
shitbo
Chứng minh ra chứ ghi mỗi thế sao đc e
Cho x, y, z là các số thực dương thoả mãn xyz=1. Tìm GTNN của P = \(\frac{x^3+1}{\sqrt{x^4+y+z}}+\frac{y^3+1}{\sqrt{y^4+z+x}}+\frac{z^3+1}{\sqrt{z^4+x+y}}-\frac{8\left(xy+yz+zx\right)}{xy+yz+zx+1}\)
Tìm GTNN của \(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\) biết x , y , z > 0 và
\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1\)
Cho x,y,z là 3 số thực dương thỏa mãn đk \(x^2+y^2+z^2=1\). Tìm GTNN của biểu thức
\(P=\frac{x}{y^2+z^2}+\frac{y}{z^2+x^2}+\frac{z}{x^2+y^2}\)
Cho 3 số thực dương x,y,z thỏa mãn \(xy+yz+xz\ge3\)> Tìm GTNN của biểu thức
\(P=\frac{x^3}{1+y}+\frac{y^3}{1+z}+\frac{z^3}{1+x}\)
Cho các số thực dương x,y,z thỏa mãn \(\frac{yz}{x}+\frac{zx}{y}+\frac{xy}{z}=1\). Tìm GTLN của biểu thức
\(A=\frac{1}{1-x}+\frac{1}{1-y}+\frac{1}{1-z}\)
cho x,y,z là các số thực dương thỏa mãn\(xy+yz+zx=1\). Chứng minh rằng \(\text{x/căn(1+x^2)+y/căn(1+y^2)+z/căn(1+z^2)+1/x^2+1/y^2+1/z^2>=21/2}\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge\frac{21}{2}\)
\(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge\frac{21}{2}\)
cho x,y,z>0 thỏa mãn x+y+z=xyz . CMR : \(\frac{2}{\sqrt{x^2+1}}+\frac{1}{\sqrt{y^2+1}}+\frac{1}{\sqrt{z^2+1}}\le\frac{9}{4}\)
Cho x,y,z là ba số dương thỏa mãn x+y+z=1. Tìm giá trị nhỏ nhất của biểu thức
\(M=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)
cho x,y,z>0 và x+y+z=3 Tìm Min của : \(P=\frac{x+y}{\sqrt{x^2+y^2+6z}}+\frac{y+z}{\sqrt{y^2+z^2+6x}}+\frac{z+x}{\sqrt{z^2+x^2+6y}}\)