em học lớp 9 lộn ngược nè! Dang Dang hỏi em thì hỏi cái đầu gối còn hơn
\(\hept{\begin{cases}x+y+z\ge3\sqrt[z]{xyz}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\end{cases}\Rightarrow}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge9\)
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{9}{\left(x+y+z\right)}\ge\frac{9}{6}=\frac{3}{2}\)đẳng thức khi x=x=z=2
còn cách này dài hơn
chứng minh bài toán phụ: với a;b cùng dấu (a;b khác 0) có \(\frac{a}{b}+\frac{b}{a}\ge2\)
\(\frac{a}{b}+\frac{b}{a}\ge2\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2+b^2-2ab}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\) luôn đúng!
trở lại với bài toán ban đầu
xét: \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1+\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+1+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}+1\)
\(=3+\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{z}{y}+\frac{y}{z}\right)\)
Áp dụng bài toán phụ mà ta đã chứng minh được: \(\frac{y}{x}+\frac{x}{y}\ge2;\frac{z}{x}+\frac{x}{z}\ge2;\frac{z}{y}+\frac{y}{z}\ge2\)
=>\(3+\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{z}{y}+\frac{y}{z}\right)\ge3+2+2+2=9\)
<=>\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\ge\frac{9}{6}=\frac{3}{2}\)(đpcm)
bạn làm cách này khi bạn chưa học các bất đẳng thức mở rộng