vì 4 = 22
và 8 =23
nên 4^x=8^y khi 3X =2y
=> số mũ của 4 phải =3/2 số mũ của 8 thì 2 số đó mới = nhau
mà số mũ hai bên đã = nhau => 8^x+8^y+8^z>=4^x+4^y+4^z
vì 4 = 22
và 8 =23
nên 4^x=8^y khi 3X =2y
=> số mũ của 4 phải =3/2 số mũ của 8 thì 2 số đó mới = nhau
mà số mũ hai bên đã = nhau => 8^x+8^y+8^z>=4^x+4^y+4^z
Cho x,y,z >0 và x+y+z=6 Chứng minh \(8^x+8^y+8^z\ge4^{x+1}+4^{y+1}+4^{z+1}\)
Cho \(x,y,z\) là các số thực dương thỏa mãn : \(x+y+z=1\) . CMR :
\(8^x+8^y+8^z\ge4^{x+1}+4^{y+1}+4^{z+1}\)
1/ Cho x, y, z khác 0 và xy + yz + zx = 0.
Tính S= (y+z)/x + (z+x)/y + (x+y)/z
2/ Cho x= y+1. C/m (x + y)(x2 + y2)(x4 + y4)= (x8 - y8)
Cho x, y, z là những số thực thỏa mãn x+y+z=0 và -1≤x,y,z≤1. Tìm GTNN và GTLN của biểu thức P=x4+y6+z8
Cho x, y, z > 0 thỏa mãn: xyz-16/(x+y+z)=0. CMR: (x+y)(x+z)>=8.
. Bài 1:Tìm x
a; x.(x-4)+x-4=0
b; x.(x-4)=2x-8
c; (2x+3).(x-1)+(2x-3).(1-x)=0
d; (x+1).(6x^2+2x)+(x-1).(6x^2+2x)=0
. Bài 2:Tính giá trị biểu thức
a; A=x.(2y-z)-2y.(z-2y) với x=2,y=1/2,z= -1
b; B=x.(y-x)+y.(x-y) với x=13,y=3
c; C=x.(x+y)-5x-5y với x=33/5,y=12/5
. Bài 3
a; CMR: n^2.(n+1)+2n.(n+1) chia hết cho 6 với mọi n thuộc Z
b; CMR: 24^n+1 - 24^n chia hết cho 23 với mọi n thuộc N
c; CMR: (2^n-1)^2 - 2^n+1 chia hết cho 8 với mọi n thuộc Z
. Bài 4: CMR: m^3 - m chia hết cho 6 với mọi m thuộc Z
Cho x,y,z > 0 CMR
\(\frac{\left(y+z\right)^2}{x}+\frac{\left(x+z\right)^2}{y}+\frac{\left(x+y\right)^2}{z}\ge4\left(x+y+z\right)\)
Cho x,y,z>0 và x+y+z=2020
CMR: a, x^4+y^4/x^3+y^3 + y^4+z^4/y^3+z^3 + z^4+x^4/z^3+x^3 >=2020
1/ Cho x, y, z khác 0 và xy + yz + zx = 0.
Tính S= (y+z)/x + (z+x)/y + (x+y)/z
2/ Cho x= y+1. C/m (x + y)(x2 + y2)(x4 + y4)= (x8 - y8)
3/ a) C/m n4+2n3-n2-2n chia hết cho 24 với mọi n thuộc Z
b) Cho a+b= 5 và ab= 6. Tính (a - b)2013
4/ C/m phân số sau tối giản với mọi n: (3n+1)/(5n+2)