1) Cho x,y,z dương thỏa mãn xyz=8 CMR
\(\frac{^{x^2}}{x^2+2x+4}\)+\(\frac{y^2}{y^2+2y+4}\)+\(\frac{z^2}{z^2+2z+4}\)>= 1
2) cho x,y,z>0 và xyz=1 CMR
(x+\(\frac{1}{y}\)-1) (y+\(\frac{1}{z}\)-1) (z+\(\frac{1}{x}\)-1)<=1
Cho x,y,z>0, xyz=1
CMR :
\(\frac{x^2}{1+y}+\frac{y^2}{1+z}+\frac{z^2}{1+x}\ge\frac{3}{2}\)
Cho x,y,z>0 và xyz=1. CMR: \(\frac{x}{y^3+2}+\frac{y}{z^3+2}+\frac{z}{x^3+2}\ge1\)
cho x+y+z=\(\frac{3}{2}\)TÌm min
P=\(\frac{\sqrt{x^2+xy+y^2}}{4yz+1}+\frac{\sqrt{y^2+yz+z^2}}{4zx+1}+\frac{\sqrt{z^2+zx+x^2}}{4xy+1}\)
Cho x;y;z nguyên dương thỏa mãn :x+y+z=xyz
CMR:
\(\frac{1+\sqrt{x^2+1}}{x}+\frac{1+\sqrt{y^2+1}}{y}+\frac{1+\sqrt{z^2+1}}{z}< =xyz\)
Cho x;y;z >0 thỏa mãn x+y+z=1. CMR:
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\le\frac{\left(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}\right)\sqrt{xyz}+6\left(x^4+y^4+z^4\right)}{2xyz}\)
Cho x,y,z là số thực dương t/m x+y+z=xyz
CMR \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le xyz\)
Cho x,y,z là các số thực dương thỏa mã: xyz=1
CMR:
\(\frac{1-x}{x+1}+\frac{1-y}{y+2}+\frac{1-z}{z+2}\le0\)0
x;y;z>0. CMR: \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\ge2+\frac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)