Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hung

Cho x,y,z>0 và xyz=1 

Tìm GTNN của M=\(\frac{\sqrt{1+x^3+y^3}}{xy}+\frac{\sqrt{1+y^3+z^3}}{yz}+\frac{\sqrt{1+z^3+x^3}}{zx}\)

Thắng Nguyễn
19 tháng 7 2017 lúc 16:36

Áp dụng BĐT AM-GM ta có:

\(\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}=\frac{\sqrt{3xy}}{xy}=\frac{\sqrt{3}}{\sqrt{xy}}\)

Tương tự cho 2 BĐT còn lại ta có:

\(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3}}{\sqrt{yz}};\frac{\sqrt{1+z^3+x^3}}{xz}\ge\frac{\sqrt{3}}{\sqrt{xz}}\)

Cộng theo vế 3 BĐT trên ta có:

\(M\ge\sqrt{3}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)=\sqrt{3}\cdot\left(\frac{\sqrt{x}}{\sqrt{xyz}}+\frac{\sqrt{y}}{\sqrt{xyz}}+\frac{\sqrt{z}}{\sqrt{xyz}}\right)\)

\(=\sqrt{3}\cdot\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{xyz}}\ge\sqrt{3}\cdot\frac{3\sqrt[3]{\sqrt{xyz}}}{1}=3\sqrt{3}\)

Khi \(x=y=z=1\)


Các câu hỏi tương tự
Minh Thư
Xem chi tiết
%Hz@
Xem chi tiết
Nguyễn Duy Long
Xem chi tiết
Trung Nguyen
Xem chi tiết
thánh yasuo lmht
Xem chi tiết
vu tien dat
Xem chi tiết
Nguyễn Hải Đăng
Xem chi tiết
shitbo
Xem chi tiết
Fire Sky
Xem chi tiết