Do z > 0 nên từ xy 2 z 2 + x 2 z + y = 3z 2 ⇒ xy 2 +\(\frac{x^2}{z}+\frac{y}{z^2}=3\)
Áp dụng AMGM ta có:
(x 2y 2 + y 2 ) + (x 2 +\(\frac{x^2}{z^2}\))+(\(\frac{y^2}{z^2}+\frac{1}{z^2}\)) ≥ 2(xy 2 +\(\frac{x^2}{z}+\frac{y}{z^2}\))=6
...............
Do z > 0 nên từ xy 2 z 2 + x 2 z + y = 3z 2 ⇒ xy 2 +\(\frac{x^2}{z}+\frac{y}{z^2}=3\)
Áp dụng AMGM ta có:
(x 2y 2 + y 2 ) + (x 2 +\(\frac{x^2}{z^2}\))+(\(\frac{y^2}{z^2}+\frac{1}{z^2}\)) ≥ 2(xy 2 +\(\frac{x^2}{z}+\frac{y}{z^2}\))=6
...............
Cho x,y,z>0 thỏa mãn xy2z2+x2z+y=3z2.Tìm GTLN của P= \(\frac{z^4}{1+z^4\left(x^4+y^4\right)}\)
Cho x,y,z là các số thực dương thỏa mãn \(xy+yz+xz=4xyz\)
Tìm GTLN của biểu thức:
\(M=\frac{1}{4\left(x+y\right)}+\frac{1}{4\left(y+z\right)}+\frac{1}{4\left(x+z\right)}\)
P/s: Proposed by: Cà Bui
Cho các số thực x ,y, z thỏa mãn : x\(\ge-1,y\ge-1,z\ge-4\)
Tìm GTLN : P = \(\frac{x^2}{x^2+y^2+4\left(xy+1\right)}+\frac{y^2-1}{z\left(3+z\right)+x+y+2}\)
Bài 1: Cho x,y thỏa mãn \(x^2+y^2-xy=4\). Tìm GTLN và GTNN của A = \(x^2+y^2\)
Bài 2: Cho x,y>0 thỏa mãn xyz=1. Tìm GTNN của
E = \(\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)
Cho x,y,z>0 thỏa mãn xyz=1 Tìm GTLN
\(A=\frac{1}{\left(3x+1\right)\left(y+z\right)+x}+\frac{1}{\left(3y+1\right)\left(x+z\right)+y}+\frac{1}{\left(3z+1\right)\left(x+y\right)+z}\)
Cho các số thực dương \(x,y,z\)thỏa mãn điều kiện \(x+y+z=1\) .Tìm giá trị nhỏ nhất của biểu thức:
\(F=\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Tìm GTLN của biểu thức:
\(P=\frac{x}{1+y+z}+\frac{y}{1+x+z}+\frac{z}{1+x+y}+\left(1-x\right).\left(1-y\right).\left(1-z\right)\)
Với mọi x,y,z biến đổi nhưng luôn thỏa mãn \(0\le x,y,z\le1\)
Cho a,b,c>0 và xy2z2+x2z+y=3z2.Tìm GTLN của biểu thức P=\(\frac{z^4}{1+z^4\left(x^4+y^4\right)}\)
Cho x,y,z dương thỏa mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\)
Tìm GTLN của biểu thức P=\(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}-\left(x-y\right)^2-\left(y-z\right)^2-\left(z-x\right)^2\)
GIÚP VỚI Ạ!!!!!!! Hứa TICK