Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đào Thị Bạch Cúc

cho x,y,z thuộc R, thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) tính  M=\(\frac{3}{4}+\left(x^2-y^2\right)\cdot\left(y^3+z^3\right)\cdot\left(z^4-x^4\right)\)

Lã Nguyễn Gia Hy
4 tháng 9 2017 lúc 23:28

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\Leftrightarrow\left(x+y\right)\left(\frac{zx+z^2+zy+xy}{xyz\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left[z\left(x+z\right)+y\left(x+z\right)\right]=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Rightarrow\left(x^2-y^2\right)\left(y^3+z^3\right)\left(z^4-x^4\right)=0\).

Vậy  \(M=\frac{3}{4}+\left(x^2-y^2\right)\left(y^3+z^3\right)\left(z^4-x^4\right)=\frac{3}{4}+0=\frac{3}{4}\)

Đào Thị Bạch Cúc
5 tháng 9 2017 lúc 16:47

thank Gia Hy


Các câu hỏi tương tự
Bùi Khắc Tuấn Khải
Xem chi tiết
nguyễn đình thành
Xem chi tiết
Bùi Hữu Vinh
Xem chi tiết
Guyn
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
Nhung Lê thị
Xem chi tiết
Giao Khánh Linh
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Blue Moon
Xem chi tiết