Từ \(\left(x-y\right)^2\ge0\Rightarrow x^2-2xy+y^2\ge0\Rightarrow x^2+y^2\ge2xy\Leftrightarrow2xy\le x^2+y^2\left("="\Leftrightarrow x=y\right)\)
Tương tự ta có: \(2yz\le y^2+z^2;2xz\le x^2+z^2\)
Cộng theo vế có: \(2xy+2yz+2xz\le2\left(x^2+y^2+z^2\right)\)
\(\Rightarrow xy+yz+xz\le x^2+y^2+z^2\)
\(\Rightarrow xy+yz+xz+2yz+2xy+2xz\le x^2+y^2+z^2+2yz+2xy+2xz\)
\(\Rightarrow3\left(xy+yz+xz\right)\le\left(x+y+z\right)^2=9\)
\(\Rightarrow P\le3\). Dấu "=" xảy ra khi x=y=z=1
Bài này cay nghiệt thật ngay từ đầu ko cho x,y,z dương luôn cho nhanh (:|
\(\hept{\begin{cases}x+y+z=1\\P=xy+yz+zx\end{cases}}\)
\(\Leftrightarrow2P=x\left(z+y\right)+y\left(x+z\right)+z\left(x+y\right)\\ \)
\(\Leftrightarrow2P=x\left(3-x\right)+y\left(3-y\right)+z\left(3-z\right)\)
\(\Leftrightarrow2P=\left(3x-x^2\right)+\left(3y-y^2\right)+\left(3z-z^2\right)\)
\(\Leftrightarrow2P=\left(x+y+z\right)+3-\left(x^2-2x+1\right)-\left(y^2-2y+1\right)-\left(z^2-2z+1\right)\)
\(\Leftrightarrow2P=3+3-\left[\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\right]\)\(\ge6\) Đẳng thức khi x=y=z=1
\(\Rightarrow P\ge\frac{6}{2}=3\)
GTNN (p)=3