Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Dương Thị Ngọc Ánh

Cho x,y,z thỏa mãn x,y,z khác 0 và x+y+z=0. Tính

S=1/x^2+y^2-z^2+1/y^2+z^2-x^2+1/z^2+x^2-y^2

Trần Thịnh Phát
24 tháng 4 2021 lúc 20:14

\(x+y+z=0\)

\(-x=y+z\)

\(x^2=\left(y+z\right)^2\) 

\(x^2=y^2+2yz+z^2\) 

\(y^2+z^2-x^2=-2yz\)

Tương tự:

\(z^2+x^2-y^2=-2zx\)

\(x^2+y^2-z^2=-2xy\)

➞ S = \(\dfrac{1}{-2xy}+\dfrac{1}{-2yz}+\dfrac{1}{-2zx}=\dfrac{x+y+z}{-2xyz}=0\) 

Vậy S = 0


Các câu hỏi tương tự
Dương Thị Ngọc Ánh
Xem chi tiết
Hoàng Thị Phương Ly
Xem chi tiết
Dương Thị Ngọc Ánh
Xem chi tiết
Dương Thị Ngọc Ánh
Xem chi tiết
❤️Nguyễn Ý Nhi❤️
Xem chi tiết
Nhat_anh_123_3_12
Xem chi tiết
Dương Thị Ngọc Ánh
Xem chi tiết
vietanh2004
Xem chi tiết
Hoàng Thị Phương Ly
Xem chi tiết