a/d bđt \(\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)ta đc:
\(\left(\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\right)^2\ge3\left(x^2+y^2+z^2\right)=9\)
-> đpcm
Dấu "=" xảy ra <=>x=y=z=1
a/d bđt \(\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)ta đc:
\(\left(\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\right)^2\ge3\left(x^2+y^2+z^2\right)=9\)
-> đpcm
Dấu "=" xảy ra <=>x=y=z=1
cho ba số dương x,y,z thỏa mãn điều kiện xy+yz+xz=1
Tính A=x\(\sqrt{\frac{\left(1+y2\right)\left(1+z2\right)}{1+x2}}\)+y\(\sqrt{\frac{\left(1+z2\right)\left(1+x2\right)}{1+y2}}\)+ z\(\sqrt{\frac{\left(1+x2\right)\left(1+y2\right)}{1+z2}}\)
Cho x,y,z>0 thỏa mãn xy+yz+xz=xyz. CMR :
\(\frac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\frac{yz}{X^3\left(1+y\right)\left(1+z\right)}+\frac{xz}{y^3\left(1+z\right)\left(1+x\right)}\) lớn hơn hoặc bằng \(\frac{1}{16}\)
Help me ... Plzzz
Cho x,y, z > 0 thỏa mãn xyz = 1.
Chứng minh rằng:
\(\frac{\sqrt{1+x^3+y^3}}{xy}+\frac{\sqrt{1+x^3+z^3}}{xz}+\frac{\sqrt{1+y^3+z^3}}{yz}\ge3\sqrt{3}\)
cho x,y,z là các số thực dương thỏa mãn \(xy+yz+xz\ge3\)
CMR : \(\frac{x^4}{y+3z}+\frac{y^4}{z+3x}+\frac{z^4}{z+3y}\ge\frac{3}{4}\)
Cho 3 số thực dương x , y , z thỏa mãn \(x+y+z\ge3\)
Chứng minh rằng: \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)
Cho x, y, z > 0 thỏa mãn: \(x^2+y^2+z^2=3\). Chứng minh: \(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\ge3\).
cho x,y,z >0 thỏa mãn x^2+y^2+z^2=3
CMR: D=\(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}>=\)3
Cho x,y,z là các số dương thỏa mãn \(x^2+y^2+z^2=1\) . Chứng minh \(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\)lớn hơn hoặc bằng căn 3
cho x,y,z >0 thỏa mãn xy+yz+zx=673
CMR: \(\frac{x}{x^2-yz+2019}+\frac{y}{y^2-xz+2019}+\frac{z}{z^2-yx+2019}\ge\frac{1}{x+y+z}\)