Cho x,y,z là na số nguyên dương nguyên tố cùng nhau và thỏa mãn: \(\left(x-z\right)\left(y-z\right)=z^2\) .CMR: xyz là số chính phương
Cho x;y;z>0 và không có 2 số nào đồng thời bằng 0.CMR:
\(\sqrt{\dfrac{x}{y+z}}+\sqrt{\dfrac{y}{z+x}}+\sqrt{\dfrac{z}{x+y}}\ge2\sqrt{1+\dfrac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}}\)
cho x+y+z=0 và xyz khác 0 tính A=(x/(y+z-X))+(y/(x+z-y))+(z/(x+y-z))
cho x,y,z >0 và x+y+z=1
CMR: S = xyz(x+y)(y+z)(z+x) <=8/729
Cho x,y,z là các số nguyên dương nguyên tố cũng nhau với (x-z).(y-z)=z2. CM: xyz là số chính phương.
MỌI NGƯỜI GIÚP MÌNH VỚI.
a) Cho a,b là hai số tự nhiên thỏa mãn \(2a^2+a=3b^2+b\)
CM: \(2a+2b+1\)là số chính phương
b) Cho \(x,y,z>0\)thỏa mãn \(xyz=1\)
CM: \(3+\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
cho x,y,z,>0 và xyz=1 CM : x/(x2+2) +y/(y2+2)+z/(z2+2) <=1
Cho x, y, z > 0 và xyz=1. CMR :
\(\dfrac{x^2}{1+y}+\dfrac{y^2}{1+z}+\dfrac{z^2}{1+z}\ge\dfrac{3}{2}\)
Cho x + y + z = 1 ; x , y , z > 0
CMR : \(\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}\) >/ 14
Cho x , y , z thuộc Z ; x,y,z khác 0 và \(\sqrt{x+y+z-2018}+\sqrt{2018\left(xy+yz+zx-xyz\right)}=0\)
Tính S = \(\frac{1}{x^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}\)
CÁC BẠN GIẢI GIÚP MÌNH CHI TIẾT BÀI NÀY VỚI !