1.Cho x^2+ 4x+1 = 0
Tính A= ( x + 1/x )^2 + (x^2 + 1/x^2 )^2 + ( x^3+ 1/x^3 )^2
2.Cho các số thực x, y khác 0 sao cho x+ 1/y và y+ 1/x là những số nguyên . CMR x^3y^3 + 1/x^3y^3 là số nguyên.
3.Cho x,y,z khác 0 tm x(y+z)^2+y(z+x)^2+z(x+y)^2=4xyz
Cho x, y, z là ba số dương. Tính \(B=2x^{2007}+3x^{2008}+x^{2009}\) biết \(x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=6\)
Tìm bộ nguyên dương x,y,z biết thỏa mãn (x+y)2+3x+y+1=z2
Cho x ,y ,z là các số nguyên dương thỏa mãn xyz = 1 . Chứng minh rằng :
\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{z+1}\ge\frac{3}{2}\)
1)Cho x;y;z>0 và x+y+z=6
Tìm max: D= ( x-1) / x + ( y-1) / y + ( z-1) / z
2)Tìm các số nguyên n thỏa mãn n^2 + 2-14 là SCP
3)GPT: x^2 - 13 x + 50 = 4 căn(x-3)
1.Tim tat ca cac cap so nguyên sao cho x^3 -x^2y+3x-2y-5=0
2. Cho0<x,y,z =<1 . CMR : x/(1+y+xz) + y/(1+z+xy) +z/(1+x+yz) =< 3/(x+y+z)
Cho x,y,z là số thực thoả mãn y2 + yz + z2 = (1- 3x2)/2 ìm GTNN và GTLN của biểu thức p= x+y+z
a) Tìm tất cả các số nguyên tố p và các số nguyên dương x,y biết : p -1=2x(x+2) và p2-1 =2y(y+2)
b) Tìm tất cả các số nguyên dương n sao cho tồn tại x,y,z là các số nguyên dương thỏa mãn x3+y3 +z3 =n.x2y2z2
Cho x, y, z là 3 số nguyên dương thỏa mãn x+y+z=2 và \(A= \frac{x^2}{y+z} + \frac{y^2}{x+z} +\frac{z^2}{x+y}\)