Cho x,y,z là 3 số thực dương thỏa mãn xyz=1.Chứng minh bất đẳng thức
\(\frac{1}{\left(2x+y+z\right)^2}+\frac{1}{\left(x+2y+z\right)^2}+\frac{1}{\left(x+y+2z\right)^2}\le\frac{3}{16}\)
Cho các số thực dương x,y,z thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)Tìm gtnn của \(P=\frac{y^2z^2}{x\left(y^2+^2\right)}+\frac{z^2x^2}{y\left(z^2+x^2\right)}+\frac{x^2y^2}{z\left(x^2+y^2\right)}\)
Cho x,y,z là những số thực dương thỏa mãn \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1.\)
Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{y^2z^2}{x\left(y^2+z^2\right)}+\frac{z^2x^2}{y\left(x^2+z^2\right)}+\frac{x^2y^2}{z\left(x^2+y^2\right)}\)
cho 3 số thực x,y z thỏa mãn \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\) . Tìm giá trị nhỏ nhất của \(P=\frac{y^2z^2}{x\left(y^2+z^2\right)}+\frac{z^2x^2}{y\left(z^2+x^2\right)}+\frac{x^2y^2}{z\left(x^2+y^2\right)}\)
cho các số x,y,z dương thỏa mãn \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\) tìm GTNN
P=\(\frac{y^2z^2}{x\left(y^2+z^2\right)}+\frac{z^2x^2}{y\left(z^2+x^2\right)}+\frac{x^2y^2}{z\left(x^2+y^2\right)}\)
cho x,y,z là các số thực không âm thỏa mãn x+y+z=1.Tìm min
\(T=\left[\frac{\sqrt[3]{x+y+2z}\left(\sqrt{xy+z}+\sqrt{2x^2+2y^2}\right)}{3\sqrt[6]{xy}}\right]\left(x^2+y^2+z^2\right)-2\sqrt{2x^2-2x+1}\)
b) Cho 3 số dương x,y,z thỏa mãn điều kiện x+y+z=3/4. Chứng minh:
\(6\left(x^2+y^2+z^2\right)+10\left(xy+yz+zx\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge9\)
Đẳng thức xảy ra khi nào?
Cho x,y,z là các số dương thay đổi và luôn thỏa mãn điều kiện xyz=1. Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
Cho x,y,z>0 thỏa mãn xyz=1. Tìm min \(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)