1 Cho \(x,y,z\)là các số thực không âm thỏa mãn \(x+y+z=1\)
Tìm GTLN và GTNN của \(A=\frac{xy+yz+zx-3xyz}{2x+2y+5z}\)
Cho x,y,z là các số thực thỏa mãn xy + yz + 3zx = 1 . Tìm giá trị nhỏ nhất của biểu thức P = x^2 + y^2 + z^2
Cho x, y, z là những số thực thỏa mãn x+y+z=0 và -1≤x,y,z≤1. Tìm GTNN và GTLN của biểu thức P=x4+y6+z8
Giả sử x,y,z là các số thực dương thỏa mãn: \(x+z\le2y\) và \(x^2+y^2+z^2=1\)
Tìm GTLN của biểu thức: \(P=\frac{xy}{1+z^2}+\frac{yz}{1+x^2}-y^3\left(\frac{1}{x^3}+\frac{1}{z^3}\right)\)
cho các số thực x, y, z thõa mãn x^2+y^2+z^2=1. Tìm GTLN của biểu thức P = xyz
Tìm GTNN và GTLN của biểu thức B= x+y+z biết rằng x:y:z là các số thực thỏa mãn đk x^2+yz+z^2=1-3x^2/2
Cho các số thức x,y,z thỏa mãn 2(y^2+yz+z^2)+3x^2=36.Tìm GTLN và GTNN của biểu thức A=x+y+z
Cho x,y,z là các số thực dương thỏa mãn \(xy+yz+xz=4xyz\)
Tìm GTLN của biểu thức:
\(M=\frac{1}{4\left(x+y\right)}+\frac{1}{4\left(y+z\right)}+\frac{1}{4\left(x+z\right)}\)
P/s: Proposed by: Cà Bui
Cho các số thực dương thỏa mãn điều kiện:
x2+ y2+ z2< hoặc = 27
Tìm GTLN và GTNN của biểu thức:
x+ y+ z+ xy+ yz+ zx