Cho x;y;z > 0 thỏa mãn xyz = 2
CMR: \(\frac{x}{2x^2+y^2+5}+\frac{2y}{6y^2+z^2+6}+\frac{4z}{3z^2+4x^2+16}\le\frac{1}{2}\)
cho x,y,z la cac so duong thoa man \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\)
CMR:\(\frac{1}{2x+y+z}+\frac{1}{2y+x+z}+\frac{1}{2z+x+y}\le1\)
cho x,y la cac so duong thay doi va thoa man dieu kien x+y\(\le\)1. tim gia tri nho nhat cua bieu thuc M=\(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
Cho x,y,z là 3 số thực dương thỏa mãn xyz=1.Chứng minh bất đẳng thức
\(\frac{1}{\left(2x+y+z\right)^2}+\frac{1}{\left(x+2y+z\right)^2}+\frac{1}{\left(x+y+2z\right)^2}\le\frac{3}{16}\)
a. cho 2 số dương x,y thỏa man x: x+y=1
tìm min của bt : \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
b, cho x,y,z là các số dương thỏa mãn \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\)
cmr : \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
a)Tim tat ca cac so nguyen duong x, y , z thoa man: \(\frac{x+y\sqrt{2013}}{y+z\sqrt{2013}}\)la so huu ti, dong thoi x2 + y2+ z2 la so nguyen to.
b) Tim so tu nhien x, y thoa man: x(1+x+x2) = y(y-1).
Cho x, y, z dương thỏa mãn: \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}=6\)
Chứng minh: \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
cho x;y;z duong thoa man xyz=1
tim gia tri nho nhat cua \(\frac{1}{x^2\left(y+z\right)}+\frac{1}{y^2\left(x+z\right)}+\frac{1}{z^2\left(x+y\right)}\)
Cho ba số dương x, y và z thỏa mãn xyz = 1.Chứng minh rằng :
\(\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2z^2+3}+\frac{1}{z^2+2x^2+3}\le\frac{1}{2}\)