biet x,y,z>0 thoa man căn xy +căn yz+ căn zx=1.tìm min A=x^2/(x+y) +y^2/(y+z)+z^2/(z+x)
a)Tim tat ca cac so nguyen duong x, y , z thoa man: \(\frac{x+y\sqrt{2013}}{y+z\sqrt{2013}}\)la so huu ti, dong thoi x2 + y2+ z2 la so nguyen to.
b) Tim so tu nhien x, y thoa man: x(1+x+x2) = y(y-1).
Cho x,y,z nguyen duong thoa man x+y-z+1=0
Tim GTLN cua \(P=\frac{x^3y^3}{\left(x+yz\right)\left(y+xz\right)\left(z+xy\right)^2}\)
CHO CAC SO DUONG x,y,z THOA MAN :x+y+z=1
tìm giá trị nhỏ nhất
M=\(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\)
cho x,y,z>0 va thoa man x+y+z=1. Tim GTNN cua F= 14(x2 +y2 +z2 ) +\(\frac{xy+yz+zx}{x^2y+y^2z+z^2x}\)
√xy + √yz + √zx =1 ;x,y,z>0
tim min A = X^2/(X+y) + y^2/(y+z) + z^2/z+x
ai lam dk mk tick cho
cho x,y,z thoa man dieu kien :x+y+z+xy+yz+zx=6 tinh gia tri nho nhat cuax^2+y^2+z^2
cho x,y,z la cac so thuc thoa x+y+z=0, x+1>0, y+1>0, z+1>0. tim GTLN cua P=\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}\)
cho x,y,z,t la cac so duong. tim GTNN cua A=\(\frac{x-t}{t+y}+\frac{t-y}{y+z}+\frac{y-z}{z+x}+\frac{z-x}{x+t}\)
Cho x, y, z > 0 và x+y+z=1. Tìm MIN của :
P= \(\dfrac{1}{x^2+y^2+z^2}+\dfrac{2023}{xy+yz+zx}\)