Cho x;y;z là các số dương thỏa mãn \(x^2+y^2+z^2=12\)cmr
\(\frac{1}{\sqrt{x^3+1}}+\frac{1}{\sqrt{y^3+1}}+\frac{1}{\sqrt{z^3+1}}\ge1\)
Cho x,y,z là các số thực dương thỏa mãn\(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\) 1. CMR \(\sqrt{\frac{xy}{x+y+2z}}+\sqrt{\frac{yz}{y+z+2x}+\sqrt{\frac{zx}{z+x+2y}}}\le\frac{1}{2}\)
Cho x, y là các số thực dương, z là số thực khác 0 thỏa mãn \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\)
CMR \(\sqrt{x+y}=\sqrt{x-z}+\sqrt{y-z}\)
Cho x,y,z là các số dương và x+y+z \(\ge1\) . CM :
\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{82}\)
Cho x, y, z là 3 số thực dương và x + y + z ≤ 1. CMR:
\(\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{z^2}}+\sqrt{z^2+\frac{1}{x^2}}\ge\sqrt{82}\)
Cho x,y,z là các số thực dương thỏa mãn xy+yz+zx=1
Chứng minh rằng
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\ge\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\)
Cho x,y,z là các số thực dương thỏa mãn:
\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}=1\)
CMR \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\frac{3}{2}\sqrt{xyz}\)
cho các số thực dương x, y, z thỏa mãn: x + y + z = 3.
Chứng minh rằng: \(\frac{1}{\sqrt{xy+x+y}}+\frac{1}{\sqrt{yz+y+z}}+\frac{1}{\sqrt{zx+z+x}}\ge\)\(\sqrt{3}\)
Cho x, y, z là các số thực dương thỏa mãn xy+yz+xz=1 . Chứng minh:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\ge\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\)