\(x^2+y^2+z^2\ge\frac{1}{3}\left(a+y+z\right)^2\)
\(x^2+y^2+z^2\ge\frac{1}{3}\left(a+y+z\right)^2\)
a) Cho x,y,z là các số dương thỏa mãn x2+y2+z2=3, tìm giá trị nhỏ nhất của F=\(\dfrac{x^2+1}{z+2}\)+\(\dfrac{y^2+1}{x+2}\)+\(\dfrac{z^2+1}{y+2}\)
b) Với a,b,c > 0 thỏa mãn ab+bc+ca=3, chứng minh rằng
\(\sqrt{\dfrac{a}{a+3}}\) +\(\sqrt{\dfrac{b}{b+3}}\)+\(\sqrt{\dfrac{c}{c+3}}\)\(\le\)\(\dfrac{3}{2}\)
Cho x , y là các số thực dương thỏa mãn x + y + xy = 8 . Tìm giá trị nhỏ nhất của biểu thức A = x2 + y2
Cho các số thực dương x,y,z thỏa mãn x+y+z=3
Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\)
Cho x; y; z ≠ 0 thỏa mãn x + y + z = 0. Tính giá trị biểu thức: A = x y x 2 + y 2 − z 2 + y z y 2 + z 2 − x 2 + z x z 2 + x 2 − y 2
A. A = 1 2
B. A = - 1 2
C. A = - 3 2
D. A = 3 2
Cho các số thực dương x,y,z thoả mãn : x+y+z=3 . Giá trị nhỏ nhất của Q= 1/(x+x2) + 1/(y+y2) + 1/(z+z2)
cho x,y,z là các số dương thỏa mãn x+y+z=1. Tìm giá trị nhỏ nhất cảu biểu thức: P= 1/16x +1/4y +1/z
cho x,y,z là các số dương thỏa mãn x + y + z = 1. Tìm giá trị nhỏ nhất của biểu thức:
M = 1/16x + 1/4y + 1/z
Cho các số thực x, y, z, a, b, c thỏa mãn: x+y+z=1; x2+y2+z2=1 và a/x=b/y=c/z.
Chứng minh rằng: ab + bc + ca =0