ta có \(x+y+z=2019xyz=>2019x^2=\frac{x^2+xy+xz}{yz}\)
\(=>2019x^2+1=\frac{x^2+xy+xz+yz}{yz}=\frac{\left(x+y\right)\left(x+z\right)}{yz}=\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)\)
\(=>\sqrt{2019x^2+1}=\sqrt{\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)}\le\frac{1}{2}\left(\frac{x}{y}+\frac{x}{z}+2\right)=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)
(theo BDT cô -si)
\(=>\frac{x^2+1+\sqrt{2019x^2+1}}{x}\le\frac{x^2+1+1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}=x+\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)
tương tự \(\frac{y^2+1+\sqrt{2019y^2+1}}{z}\le y+\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\)
\(\frac{z^2+1+\sqrt{2019z^2+1}}{z}\le z+\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)
=>.vt\(\le x+y+z+3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
chứng minh được \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
=>\(3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3\left(xy+yz+zx\right)}{2019xyz}\le\frac{2019\left(x+y+z\right)^2}{x+y+z}=2019\left(x+y+z\right)\)
=>.vt\(\le2020\left(x+y+z\right)=2020.2019xyz=\)vt
=> dpcm
Ta có: \(2019xyz=x+y+z\)
=> \(2019xy=\frac{x}{z}+\frac{y}{z}+1>1\); \(2019yz=\frac{y}{x}+\frac{z}{x}+1>1\); \(2019xz=\frac{x}{y}+\frac{z}{y}+1>1\)
Ta lại có: \(x+y+z=2019xyz\)
=> \(2019x\left(x+y+z\right)=2019^2x^2yz\)
=> \(2019x^2+1=\left(2019^2x^2yz-2019xy\right)-\left(2019xz-1\right)\)
=> \(2019x^2+1=\left(2019xy-1\right)\left(2019xz-1\right)\le\frac{\left(2019xy+2019xz-2\right)^2}{4}\)
=> \(\sqrt{2019x^2+1}\le\frac{2019xy+2019xz-2}{2}\)
Tương tự : \(\sqrt{2019y^2+1}\le\frac{2019xy+2019yz-2}{2}\)
\(\sqrt{2019z^2+1}\le\frac{2019xz+2019yz-2}{2}\)
=> \(\frac{x^2+1+\sqrt{2019x^2+1}}{x}+\frac{y^2+1+\sqrt{2019y^2+1}}{y}+\frac{z^2+1+\sqrt{2019z^2+1}}{z}\)
\(\le\)\(\frac{x^2+1+\frac{2019xy+2019xz-2}{2}}{x}+\frac{y^2+1+\frac{2019xy+2019yz-2}{2}}{y}+\frac{z^2+1+\frac{2019xz+2019yz-2}{2}}{z}\)
\(=\frac{2x^2+2019xy+2019xz}{2x}+\frac{2y^2+2019xy+2019yz}{2y}+\frac{2z^2+2019xz+2019yz}{2z}\)
\(=x+\frac{2019}{2}y+\frac{2019}{2}z+y+\frac{2019}{2}x+\frac{2019}{2}z+z+\frac{2019}{2}x+\frac{2019}{2}y\)
\(=2020\left(x+y+z\right)=2020.2019xyz\)
Vậy có điều cần cm
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x=y=z\\x+y+z=2019xyz\end{cases}}\Leftrightarrow x=y=z=\frac{1}{\sqrt{673}}\)
sửa lại cái dòng thứ 2 từ dưới lên nha
vt\(\le2020\left(x+y+z\right)=2020.2019xyz=\) vp (dpcm)
bằng .vp chư ko phải = .vt nha
Câu hỏi của Phùng Gia Bảo - Toán lớp 9 - Học toán với OnlineMath
Tham khảo nha