Có x2015 + y2015 + z2015 = 3
Điều này xảy ra khi và chỉ khi x = y = z = 1
=> max của x2 + y2 + z2 = 3
Vậy...
Có x2015 + y2015 + z2015 = 3
Điều này xảy ra khi và chỉ khi x = y = z = 1
=> max của x2 + y2 + z2 = 3
Vậy...
Cho x, y, z là các số dương thỏa mãn điều kiện: \(x^{2015}+y^{2015}+z^{2015}=3\)
Tính giá trị lớn nhất của biểu thức: \(x^2+y^2+z^2\)
Cho \(x,y,z\)là các số dương thoả mãn điều kiện: \(x^{2005}+y^{2005}+z^{2005}=3\)
Tìm giá trị lớn nhất của biểu thức: \(x^2+y^2+z^2\)
Cho x,y,z là các số dương thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2015\) Tìm giá trị lớn nhất của biểu thức : P = \(\frac{xy}{x^3+y^3}+\frac{yz}{y^3+z^3}+\frac{zx}{z^3+x^3}\)
a, Cho x3+y3+3(x2+y2)+4(x+y)+4=0 và x.y>0
Tìm giá trị lớn nhất biểu thức: M = \(\frac{1}{x}+\frac{1}{y}\)
b, Cho các số x, y, z thỏa mãn điều kiện: y2 + z2 + yz = 1 - \(\frac{3}{2}x^2\)
Tìm giá trị lớn nhất và nhỏ nhất của P = x + y + z
c, Cho ba số dương x, y, z thoả mãn điều kiện: \(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}}\)
Tìm giá trị nhỏ nhất của biểu thức: P = 2x + 3y – 4z.
tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức B=x+y+z. Biết rằng x,y,z là các số thực thỏa mãn điều kiện y^2+yz+z^2=1007-(3x^2)/2
Bài 1. Cho ba số dương thỏa mãn điều kiện x + y + z = 4. Tìm giá trị nhỏ nhất của biểu thức A = 4/x+1 + 9/y+2 +25/z+3
1. tìm GTNN của (x-1)^4+(x+3)^4
2. cho x,y,z là các số thực thỏa mãn: x+y+z=x^3+y^3+z^3=1
tình gt của A=x^2015+y^2015+z^2015
Cho các số thực x,y,z thỏa mãn điều kiện x2+y2+z2. Hãy tìm giá trị lớn nhất của biểu thức
\(x^3+y^3+z^3-3xyz\)
Cho các số thực dương x,y,z thoả mãn x-y+z=-1. Tìm giá trị lớn nhất của biểu thức: P=\(\frac{x^3z^3}{\left(x+yz\right)\left(z+xy\right)\left(y+xz\right)^2}\)
Giúp mình với!