Cho x,y,z là 3 số thực dương thỏa mãn \(4x^2+3\left(y^2+z^2\right)+6xyz=4\)
CMR :\(2x+\sqrt{3}\left(y+z\right)\le3\)
cho các số dương thỏa x,y,z thỏa mãn \(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)+\(\dfrac{1}{z}\)=4
chứng minh rằng: \(\dfrac{1}{2x+y+z}\)+\(\dfrac{1}{x+2y+z}\)+\(\dfrac{1}{x+y+2z}\)\(\le\)1
Cho 3 số thực dương x, y, z thỏa mãn x+y+z=1
Chứng minh rằng \(\dfrac{\sqrt{xy+z}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)
Cho x, y, z là các số thực dương thỏa mãn xyz=1. Chứng minh rằng :
\(\frac{x^4y}{x^2+1}+\frac{y^4z}{y^2+1}+\frac{z^4x}{z^2+1}\ge\frac{3}{2}\)
cho x,y,z là ba số thực dương thỏa mãn x+y+z=2018
Chứng minh \(\frac{x^3}{\left(y+z\right)^2}+\frac{y^3}{\left(x+z\right)^2}+\frac{z^3}{\left(x+y\right)^2}>=\frac{1009}{2}\)
Cho x , y , z là 3 số thực dương thỏa mãn \(x^2+y^2+z^2=2\) . Chứng minh rằng :\(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{z^2+x^2}\le\frac{x^3+y^3+z^3}{2xyz}+3\)
Cho x,y,z là ba số thực dương thỏa mãn điều kiện \(\left(x-z\right)\left(y-z\right)=z^2\).Chứng minh rằng tích xyz là số chính phương
Cho x,y,z là 3 số thực dương thỏa mãn \(x+y+z=2\)Chứng Minh Rằng:
\(4\left(x^2+y^2+z^2\right)+9xyz\ge8\)
Cho ba số dương x, y và z thỏa mãn xyz = 1.Chứng minh rằng :
\(\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2z^2+3}+\frac{1}{z^2+2x^2+3}\le\frac{1}{2}\)