\(VT=\sum\frac{2}{x^2+y^2}=\sum\frac{x^2+y^2+z^2}{x^2+y^2}=\sum\left(1+\frac{z^2}{x^2+y^2}\right)\le3+\sum\frac{z^2}{2xy}=3+\frac{x^3+y^3+z^3}{2xyz}=VP\)
\(VT=\sum\frac{2}{x^2+y^2}=\sum\frac{x^2+y^2+z^2}{x^2+y^2}=\sum\left(1+\frac{z^2}{x^2+y^2}\right)\le3+\sum\frac{z^2}{2xy}=3+\frac{x^3+y^3+z^3}{2xyz}=VP\)
Cho x , y , z là 3 số thực dương thỏa mãn \(x^2+y^2+z^2=2\) . Chứng minh rằng :\(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{z^2+x^2}\le\frac{x^3+y^3+z^3}{2xyz}+3\)
1/cho x,y,z là 3 số thực dương thỏa mãn \(x^2+y^2+z^2=2\)
Chứng minh: \(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{x^2+z^2}\le\frac{x^3+y^3+z^3}{2xyz}+3\)
Cho x , y , z là 3 số thực dương thỏa mãn x2 + y2 + z2 = 2 . CMR :
\(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{z^2+x^2}\le\frac{x^3+y^3+z^3}{2xyz}+3\).
Cho x , y , z là ba số thực dương thỏa mãn x2 + y2 + z2 = 2 . CMR :
\(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{z^2+x^2}\le\frac{x^3+y^3+z^3}{2xyz}+3\).
Cho x, y, z là ba số dương thoả mãn \(x+y+z=3\). Chứng minh rằng: \(\frac{z^3}{z^2+x^2}+\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}\ge\frac{3}{2}\)
Cho x, y, z là các số thực dương thoả mãn xy + yz + xz = 1. Chứng minh
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\ge\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\)
1) Cho x,y,z>0 thoả mãn : xyz<=1. Chứng minh rằng: \(\frac{x\left(1-y^3\right)}{y^3}\)+ \(\frac{y\left(1-z^3\right)}{z^3}\)+\(\frac{z\left(1-x^3\right)}{x^3}\)>=0
2) Cho x, y, z là các số thực dương thỏa mãn x ≥ z. CMR: xz /(y^2 + yz) + y^2 / (xz + yz) + (x + 2z)/(x + z) ≥ 5/2
cho x,y,z là các số thực dương chứng minh rằng :
\(\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}\ge\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\)
cho các số thực dương x,y,z thỏa mãn \(x^2+y^2+z^2=3xyz\) chứng minh \(\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{3}{2}\)