\(x-y-z=0\Leftrightarrow\left\{{}\begin{matrix}x-z=y\\y-x=-z\\y+z=x\end{matrix}\right.\)
\(A=\left(1-\dfrac{z}{x}\right)\left(1-\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)=\dfrac{x-z}{x}.\dfrac{y-x}{y}.\dfrac{y+z}{z}=\dfrac{y}{x}.\dfrac{-z}{y}.\dfrac{x}{z}=-1\)