Lời giải:
Áp dụng BĐT AM-GM:
$3x+\frac{16}{3}\ge 8\sqrt{x}$
$4y+4\geq 8\sqrt{y}$
$6z+\frac{8}{3}\geq 8\sqrt{z}$
Cộng theo vế: $P+12\geq 8(\sqrt{x}+\sqrt{y}+\sqrt{z})=24$
$\Rightarrow P\geq 12$
Vậy $P_{\min}=12$ khi $(x,y,z)=(\frac{16}{9}, 1, \frac{4}{9})$
$P+