Ta có: \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)
hay \(\left(-7\right)^2=19+2\left(xy+yz+xz\right)\)
\(\Rightarrow\) \(xy+yz+xz=\frac{\left(-7\right)^2-19}{2}=15\)
Do đó: \(7\left(xy+yz+xz\right)=7.15=105\)
Ta có: \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)
hay \(\left(-7\right)^2=19+2\left(xy+yz+xz\right)\)
\(\Rightarrow\) \(xy+yz+xz=\frac{\left(-7\right)^2-19}{2}=15\)
Do đó: \(7\left(xy+yz+xz\right)=7.15=105\)
Cho x2 + y2 + z2 = 10. Tính:
P = ( xy + yz + xz)2 + ( x - yz)2 + ( y - xz)2 + ( z - xy)2
cho x+y+z=a
x2+y2+z2=b
\(\dfrac{1}{\text{x
}}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{c}\)
Tính xy+yz+xz, x3+y3+z3
cho x+y+z=4 xy+xz+xt+yz+yt+zt=1 tìm GTNN của x2+y2+z2+t2
phân tích a)(x-y)3+(y-z)3+(z-x)3
b)x.(y2-z2)+y.(z2-x2)+z.(x2-y2)
c)xy.(x-y)-xz.(x+z)-yz.(zx-y+z)
d)x.(y+z)2+y.(z-x)2+z.(x+y)2-4xyz
Cho x, y , z khác 0. Cmr nếu a=x2-yz, b=y2-xz , c=z2-xy thì (ax+by+cz) chia hết cho (a+b+c)
help em gấp ạ
chứng minh nếu x2−yzx(1−yz)=y2−zxy(1−xz)x2−yzx(1−yz)=y2−zxy(1−xz).Với x≠y,xyz≠0,yz≠1,xz≠1x≠y,xyz≠0,yz≠1,xz≠1 thì xy+xz+yz=xyz(x+y+z)
⇔x2+y2+z2−xy−yz−xz≥0
Cho x+y-z=0 và xy+yz-xz=0.tính s=(x-z-2)^3+1/7(x+y-7)^3-4/9(y+z-3/2)^4
chứng minh rằng nếu x2−yzx(1−yz) =y2−xzy(1−yz) với x≠y,xyz≠0,yz≠1,xz≠1thì xy+yz+xz=xyz(x+y+z)