Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
okokok

Cho xyz = 2 và x+y+z = 0. Tính A = (x+y)(y+z)(x+z)

Trần Đình Thuyên
28 tháng 7 2017 lúc 19:29

theo cô-si ta có

\(x+y\ge2\sqrt{xy}\)

\(y+z\ge2\sqrt{yz}\)

\(x+z\ge2\sqrt{xz}\)

nhân vế với vế ta có

\(A=\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge2\sqrt{xy}\times2\sqrt{yz}\times2\sqrt{xz}\)

\(A=\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\sqrt{x^2y^2z^2}=8xyz\)

mà xyz=2            suy ra

\(A=\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\times2=16\)

vậy GTNN của A=16

uzumaki naruto
28 tháng 7 2017 lúc 19:29

Ta có: x+y + z = 0 => x = -y-z (1) ; y= -x-z (2); z = -y-x (3)

Thay (1); (2); (3) vào A = (x+y)(y+z)(x+z), có:

A = (-y-z+y)(-x-z+z)(x - y - x) = (-z)(-x)(-y) = -(xyz) = -2 

Vậy khi xyz = 2 và x+y+z = 0 thì giá trị biểu thức  A = (x+y)(y+z)(x+z) là -2

lili
3 tháng 4 2020 lúc 23:31

Thuyên lm sai r đây là tính giá trị mà có phải tìm min đâu ??

Khách vãng lai đã xóa