Cho x,y,z>0 và x+y+z=9
tìm gtnn của S=\(\frac{x^3}{x^2+xy+y^2}\)+\(\frac{y^3}{y^2+yz+z^2}+\frac{z^3}{z^2+xz+x^2}\)
Cho x y z > 0 và xy+yz+xz \(\ge\) 3. Tìm Min của \(P=\frac{x^3}{\sqrt{y^2+3}}+\frac{y^3}{\sqrt{z^2+3}}+\frac{z^3}{\sqrt{x^2+3}}\)
Cho 3 số thực x, y, z thỏa mãn: \(x+y+z\le\frac{3}{2}\). Tìm Min \(P=\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)
Cho x,y,z>0 và x+y+z=3. CMR: \(\frac{x^3}{y^3+8}+\frac{y^3}{z^3+8}+\frac{z^3}{x^3+8}\ge\frac{1}{9}+\frac{2}{27}\left(xy+yz+xz\right)\)
Cho x,y,z là 3 số thực dương thỏa mãn xyz=1. Chứng minh:
\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}>=\frac{3}{2}\)
Cho các số dương x,y,z thỏa mãn xy+yz+zx=3. Tìm GTNN của:
A= \(\frac{yz}{x^3+2}+\frac{xz}{y^3+2}+\frac{xy}{z^3+2}\)
Mình là thành viên mới, rất mong được học hỏi. Xin hãy giúp đỡ mình ạ!!!
cho x , y , z > 0 thỏa mãn xy + yz + zx = 3xyz
CMR: \(A=\frac{x^3}{z+x^2}+\frac{y^3}{x+y^2}+\frac{z^3}{y+z^2}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Cho x,y,z>0 thoả mãn \(x+y+z\le3\). tìm GTNN của biểu thức
\(P=\frac{2}{x^3}+\frac{2}{y^3}+\frac{2}{z^3}+\frac{1}{x^2-xy+y^2}+\frac{1}{y^2-yz+z^2}+\frac{1}{z^2-zx+x^2}\)
Cho x,y,z>0 thoả mãn \(x+y+z\le3\). Tìm GTNN của biểu thức
\(P=\frac{2}{x^3}+\frac{2}{y^3}+\frac{2}{z^3}+\frac{1}{x^2-xy+y^2}+\frac{1}{y^2-yz+z^2}+\frac{1}{z^2-zx+x^2}\)
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}>=3 \)
biết x,y,z>0 và x+y+z=xy+xz+yz=6xyz