nghiện garena ff à cho xin kb nick được ko ạ có thể ghi số id
Với x, y, z >0, Có: \(x+y+z\ge3\sqrt[3]{xyz}=3\)
=> Đặt: x + y+z =t => \(t\ge3\)
\(A=\frac{x^2}{1+x}+\frac{y^2}{1+y}+\frac{z^2}{1+z}\ge\frac{\left(x+y+z\right)^2}{3+x+y+z}\)
\(=\frac{t^2}{t+3}=t-3+\frac{9}{t+3}\)
\(=\left(\frac{t+3}{4}+\frac{9}{t+3}\right)+\frac{3\left(t+3\right)}{4}-6\ge2\sqrt{\frac{t+3}{4}.\frac{9}{t+3}}+3.\frac{\left(3+3\right)}{4}-6\)
\(=2.\frac{3}{2}+\frac{9}{2}-6=\frac{3}{2}\)
"=" xảy ra <=> x = y = z =1