Cho x,y,z >0 thỏa mãn \(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)
TÍnh P=xyz
Cho x, y, z khác 0 thỏa mãn:
x+y+z=xyz ; \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\sqrt{3}\)
Tính \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Cho x,y,z >0 thỏa mãn x+\(\frac{1}{y}\)=y+\(\frac{1}{z}\)=z+\(\frac{1}{x}\)
Tính P=xyz
cho x,y,z thỏa mãn x+y+z=7. x^2+y^2+z^2 =23, xyz=3
Tính H = \(\frac{1}{xy+z-6}+\frac{1}{yz+x-6}+\frac{1}{zx+y-6}\)
Cho ba số dương x,y,z thỏa mãn xyz <=1 . Chứng minh rằng
\(\frac{x\left(1-y^3\right)}{y^3}+\frac{y\left(1-z^3\right)}{z^3}+\frac{z\left(1-x^3\right)}{x^3}\ge0\)0
Cho x,y,z>0 thỏa mãn xyz=1 Tìm GTLN
\(A=\frac{1}{\left(3x+1\right)\left(y+z\right)+x}+\frac{1}{\left(3y+1\right)\left(x+z\right)+y}+\frac{1}{\left(3z+1\right)\left(x+y\right)+z}\)
Cho x,y,z >0 thỏa mãn xy+yz+xz=xyz. CM
\(\frac{y}{x^2}+\frac{z}{y^2}+\frac{x}{z^2}\)\(\ge3\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\)
Giải hộ vs ạ
1.Cho x,y,z khác 0 thõa mãn x+y+z=xyz và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\sqrt{3}\)
Tính P= \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Cho x,y,z thỏa mãn: x + y + z = 7; x2 + y2 + z2 = 23; xyz = 3
Tính giá trị \(A=\frac{1}{xy+z-6}+\frac{1}{yz+x-6}+\frac{1}{zx+y-6}\)