\(3\left(x+y+z\right)+4\le\frac{27}{4}xyz\le\frac{1}{4}\left(x+y+z\right)^3\)\(\Leftrightarrow\)\(\left(x+y+z-4\right)\left(x+y+z+2\right)^2\ge0\)
\(3\left(x+y+z\right)+4\le\frac{27}{4}xyz\le\frac{1}{4}\left(x+y+z\right)^3\)\(\Leftrightarrow\)\(\left(x+y+z-4\right)\left(x+y+z+2\right)^2\ge0\)
Cho x;y;z >0 thỏa mãn x+y+z=1. CMR:
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\le\frac{\left(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}\right)\sqrt{xyz}+6\left(x^4+y^4+z^4\right)}{2xyz}\)
Cho x,y,z>0 thỏa mãn xyz=1. Tìm min \(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
cho x,y,z là các số dương thỏa mãn xyz=1
Tìm min M=\(\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(x+z\right)}+\frac{1}{z^3\left(x+y\right)}\)
cho x, y, z>0 thỏa mãn \(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\le\left(x+y+z\right)\left(1+\frac{1}{\sqrt[3]{xyz}}\right)\)
Cho 3 số x;y;z > 0 thỏa mãn:
\(x+y+z+\sqrt{xyz}=4\)
Tìm \(A=\sqrt{x\left(4-y\right)\left(4-z\right)}+\sqrt{y\left(4-x\right)\left(4-z\right)}+\sqrt{z\left(4-x\right)\left(4-y\right)}-\sqrt{xyz}\)
Cho x,y,z > 0 thỏa xy+yz+zx=xyz. Chứng minh:
\(\frac{x^4+y^4}{xy\left(x^3+y^3\right)}+\frac{y^4+z^4}{yz\left(y^3+z^3\right)}+\frac{z^4+x^4}{zx\left(z^3+x^3\right)}\ge1\)
BĐT+TÌM CỰC TRỊ
1.Cho x,y,z là các số dương thỏa mãn xyz >= x+y+z+2. Tìm Max x+y+z?
2.Cho x,y,z t/m xy+yz+zx=4. Tìm Min A=x^4+y^4+z^4
3. Cho a,b,c với a>c;b>c>0. CMR: \(\sqrt{c\left(a+c\right)}+\sqrt{c\left(b-c\right)}
Cho x,y,z>0; xyz=1. Tìm Min H=\(\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(x+z\right)}+\frac{1}{z^3\left(x+y\right)}\)
cho \(x,y,z>0\) thỏa mãn\(\left(x+y\right)\left(y+z\right)\left(z+x\right)=1\).CMR
\(xy+yz+zx\le\dfrac{3}{4}\)