cho x,y,z khác 0 thỏa mãn: 2( x+y)= 3(y+z)=4(z+x) tính
P= \(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\)
Cho các số x,y,z khác 0 thỏa mãn 2(x+y)=3(y+z)=4(x+z). Tính P = \(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\)
cho x , y, z ≠0 thỏa mãn \(\dfrac{x+y-z}{z}\)=\(\dfrac{y+z-x}{x}\)=\(\dfrac{z+x-y}{y}\). tính P=(1+\(\dfrac{x}{y}\)).(1 +\(\dfrac{y}{z}\)).(1+\(\dfrac{z}{x}\))
Cho x,y,z thỏa mãn \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}\) với x,y,z khác 0. Tính \(P=\dfrac{x-y+z}{x+2y-z}\)
Cho x,y,z thỏa mãn: \(\dfrac{3x-2y+z}{x}\) = \(\dfrac{3y-2z+x}{y}\) = \(\dfrac{3z-2x+y}{z}\)
Tính Q = \(\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{z+x}{y}\)
cho x,y,z là các số thực khác, thỏa mãn:
\(\dfrac{x+y-2017z}{z}=\dfrac{y+z-2017x}{x}=\dfrac{z+x-2017y}{y}\)
tính gtbt: \(P=\left(1+\dfrac{y}{x}\right)\left(1+\dfrac{x}{z}\right)\left(1+\dfrac{z}{y}\right)\)
Cho ba số x,y,z thỏa mãn: \(\dfrac{x}{2018}=\dfrac{y}{2019}=\dfrac{z}{2020}\)
CMR: \(\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\)
Cho 3 số x, y, z thỏa mãn: \(\dfrac{x}{2018}=\dfrac{y}{2019}=\dfrac{z}{2020}\)
CMR: \(\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\)
HELP ME!
Tìm x,y,z thỏa mãn:
\(\dfrac{x+2}{3}\)=\(\dfrac{y-5}{-4}\)=\(\dfrac{z+1}{5}\); 2x-3y+z=72 giúp tui với huhu