Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nhi Nhi

Cho x,y,z >0. Chứng minh rằng \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}..\)dấu bằng xảy ra khi nào?

Mọi người giúp em với ạ! Em cảm ơn!

titanic
16 tháng 9 2018 lúc 19:58

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1^2}{x}+\frac{1^2}{y}+\frac{1^2}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)( Bất đẳng thức Svac-xơ )

Dấu = xảy ra khi \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\)

Phan Nghĩa
23 tháng 6 2020 lúc 12:58

BĐT trên 

\(< =>\frac{xy+yz+xz}{xyz}\ge\frac{9}{x+y+z}\)

\(< =>\left(x+y+z\right)\left(xy+yz+xz\right)\ge9xyz\)

Áp dụng BĐT cô si cho 3 số :

\(x+y+z\ge3\sqrt[3]{xyz}\)

\(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\)

Nhân vế với vế : \(\left(x+y+z\right)\left(xy+yz+xz\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{x^2y^2z^2}=9xyz\)

Nên ta có đpcm

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
23 tháng 6 2020 lúc 16:49

Tham khảo các cách làm hay tại đây:

Câu hỏi của Sherlock Shinichi - Toán lớp 9 - Học toán với OnlineMath

Vào TKHĐ của mình mà bấm link nhé ;)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Penguin 96
Xem chi tiết
Vuvantuan
Xem chi tiết
Hiếu Trần
Xem chi tiết
Nam Thanh Long
Xem chi tiết
Dương Văn Chiến
Xem chi tiết
Oo Bản tình ca ác quỷ oO
Xem chi tiết
Momozono Nanami
Xem chi tiết
Mavis Vermillion
Xem chi tiết
Vũ Mai Anh
Xem chi tiết