Ta có:
\(2A=6x^2+6y^2+2z^2=\left(4x^2+z^2\right)+\left(4y^2+z^2\right)+\left(2x^2+2y^2\right)\)
Áp dụng BĐT AM-GM cho các số không âm, ta có:
\(2A\ge4\left(xy+yz+zx\right)=20\)
\(\Rightarrow A\ge10\)
\(''=''\Leftrightarrow x=y=1,z=2\)
Ta có:
\(2A=6x^2+6y^2+2z^2=\left(4x^2+z^2\right)+\left(4y^2+z^2\right)+\left(2x^2+2y^2\right)\)
Áp dụng BĐT AM-GM cho các số không âm, ta có:
\(2A\ge4\left(xy+yz+zx\right)=20\)
\(\Rightarrow A\ge10\)
\(''=''\Leftrightarrow x=y=1,z=2\)
Giúp mình gấp câu này,căn quá à: Cho x,y,z>0 và x+y+z=1 tìm GTNN( min) của \(P=\frac{9}{1-\left(xy+yz+zx\right)}+\frac{1}{4xyz}\)
Cho các số dương x;y;z. CMR:
\(\dfrac{xy}{x^2+yz+zx}+\dfrac{yz}{y^2+zx+xy}+\dfrac{zx}{z^2+xy+yz}\le\dfrac{x^2+y^2+z^2}{xy+yz+zx}\)
Cho các số thực dương x, y, z thỏa mãn x2 + y2 + z2 = 3. CMR \(\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge xy+yz+zx\)
Cho 3 số x,y,z dương thỏa mãn :x+y+z=3.Tìm GTNN của biểu thức sau: P=xy+yz+zx+3/x+3/y+3/z
cho các số thực ko âm x,y,z thỏa mãn \(x+y+z=1\) .chứng minh: \(xy+yz+zx\le\dfrac{8}{27}\)
Cho x,y,z >0 thỏa mãn x+y+z=1.Tìm GTLN của
Q=\(\dfrac{x}{x+\sqrt{x+yz}}+\dfrac{y}{y+\sqrt{y+zx}}+\dfrac{z}{z+\sqrt{z+xy}}\)
show that xy/x+y + yz/y+z + zx/z+x \(\ge\) x+y+z/2
với x,y,z là 3 số dương
1) Cho x, y, z là những số dương. Chứng minh rằng:
√x2 + xy + y2 + √y2 + yz + z2 + √z2 + zx + x2 ≥ (x + y + z)* √3
2) Cho a + b ≥ 0, chứng minh rằng:
(a + b)(a3 + b3)(a5 + b5) ≤ 4(a9 + b9)
Cho \(x,y,z,t>0\) thỏa mãn \(xyzt=1\)
Chứng minh \(\dfrac{1}{x^3\left(yz+zt+ty\right)}+\dfrac{1}{y^3\left(xz+zt+tx\right)}+\dfrac{1}{z^3\left(xy+yt+tx\right)}+\dfrac{1}{t^3\left(xy+yz+zx\right)}\ge\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{t}\right)\)