Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Tuấn Trọng

Cho xy+xz+yz =0 và  xyz \(\ne\)0 Tính M= \(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)

OoO_Nhok_Lạnh_Lùng_OoO
2 tháng 9 2017 lúc 14:05

làm tương tự bài này nha

x + y + z = 3. Tìm Max P = xy + yz + xz

Ta có: (x - y)² ≥ 0 <=> x² - 2xy + y² ≥ 0 <=> x² + y² ≥ 2xy

hay 2xy ≤ x² + y² , dấu " = " xảy ra <=> x = y 

tương tự: 

+) 2yz ≤ y² + z² +) 2xz ≤ x² + z² 

cộng 3 vế của 3 bđt trên

--> 2xy + 2yz + 2xz ≤ 2(x² + y² + z²) 

--> xy + yz + xz ≤ x² + y² + z² 

--> xy + yz + xz + 2xy + 2yz + 2xz ≤ x² + y² + z² + 2xy + 2yz + 2xz 

--> 3(xy + yz + xz) ≤ (x + y + z)² 

--> 3(xy + yz + xz) ≤ 3² 

--> xy + yz + xz ≤ 3 

Thúy Ngân
2 tháng 9 2017 lúc 14:27

Theo đề ta có :

xy + yz + xz = 0 

\(\Rightarrow xy=0-yz-xz=-\left(yz+xz\right)\) (1)

\(\Rightarrow yz=0-xz-xy=-\left(xz+xy\right)\)(2)

\(\Rightarrow xz=0-xy-yz=-\left(xy+yz\right)\)(3)

\(M=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)

Từ (1) ; (2) và (3) , ta có :

\(M=\frac{-\left(xy+xz\right)}{x^2}+\frac{-\left(xy+yz\right)}{y^2}+\frac{-\left(yz+xz\right)}{z^2}\)

\(M=\frac{-x\left(y+z\right)}{x^2}+\frac{-y\left(x+z\right)}{y^2}+\frac{-z\left(x+y\right)}{z^2}\)

\(M=\frac{-\left(y+z\right)}{x}+\frac{-\left(x+z\right)}{y}+\frac{-\left(x+y\right)}{z}\)

\(M-3=\left(\frac{-\left(y+z\right)}{x}-1\right)+\left(\frac{-\left(x+z\right)}{y}-1\right)+\left(\frac{-\left(x+y\right)}{z}-1\right)\)

\(M-3=\left(\frac{-y-z}{x}-\frac{x}{x}\right)+\left(\frac{-x-z}{y}-\frac{y}{y}\right)+\left(\frac{-x-y}{z}-\frac{z}{z}\right)\)

\(M-3=\left(\frac{-y-z-x}{x}\right)+\left(\frac{-x-z-y}{y}\right)+\left(\frac{-x-y-z}{z}\right)\)

\(M-3=\frac{-\left(y+z+x\right)}{x}+\frac{-\left(x+z+y\right)}{y}+\frac{-\left(x+y+z\right)}{z}\)

..............

Tuyển Trần Thị
2 tháng 9 2017 lúc 18:28

\(\frac{xy+xz+yz}{xyz}=0\Rightarrow\frac{1}{z}+\frac{1}{y}+\frac{1}{x}=0\)

voi a+b+c=0 thi \(a^3+b^3+c^3=3abc\)

that vay  \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\) 

                                                            =\(\left(a+b+c\right)\left(\left(a+b\right)^2-\left(a+b\right)c+c^2\right)-3ab\left(a+b+c\right)\)

                                                           =0

ap dung ta cung co \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=3\left(\frac{1}{x}.\frac{1}{y}.\frac{1}{z}\right)=\frac{3}{xyz}\)

M=\(\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=0\)


Các câu hỏi tương tự
luongvanngoc
Xem chi tiết
Cold Blood
Xem chi tiết
Nguyễn Thị Minh Nguyệt
Xem chi tiết
Hà Thị Thanh Xuân
Xem chi tiết
One Two Three
Xem chi tiết
Nguyen Duy Dai
Xem chi tiết
Nguyễn Thị Minh Nguyệt
Xem chi tiết
Hồ Minh Phi
Xem chi tiết
Nhái Channel
Xem chi tiết