Ta có
3P + 8 = (2a2 + 2b2) + (a 2 + 4) + (b2 + 4)
\(\ge4ab+4a+4b\)= 32
=> P\(\ge\)8
Đạt được khi a = b = 2
Ta có
3P + 8 = (2a2 + 2b2) + (a 2 + 4) + (b2 + 4)
\(\ge4ab+4a+4b\)= 32
=> P\(\ge\)8
Đạt được khi a = b = 2
Cho (x+y-1)2 = xy tìm GTNN của P=1/xy + 1/x2+y2 + √xy/x+y
Cho x,y là các sỗ thực sao cho x2 + y2 = 1. Tìm GTNN của A=(x - 3)(y - 3)
Cho x, y ∈ R thỏa mãn x + y + xy = 5 4 . Tìm giá trị nhỏ nhất của biểu thức A = x 2 + y 2
Tìm nghiệm nguyên của phương trình : x2 - xy +y2 = x-y
Tìm min, max của P = x2 + y2 với x, y là các số thực không âm và x + y + xy = 15
Tìm x, y ϵ Z+ : 2(x+y) + xy = x2 + y2
Giúp e vs plzz sắp thi vào 10 chuyên rồi
Cho x,y là các số thực thay đổi thỏa mãn điều kiện x2 +y2+xy=3.Tìm giá trị lớn nhất và nhỏ nhất của biểu thức x2+y2-xy
cho x y z là các số thực dương thỏa mãn x + y + z = 3.Tìm GTLN của A= xy/căn(z2+3) + yz/căn(x2+3) + zx/căn(y2+3)
Tìm GTNN: (x2 + y2 = 3)
\(K=\sqrt{4.\left(x+y\right)+11}+\sqrt{21-6.\left(x+y\right)}\)