Cho \(xy=x+y\)
Tính giá trị biểu thức : \(A=\left(x^3+y^3-x^3y^3\right)^3+27x^6y^6\)
Rút gọn rồi tính giá trị của biểu thức khi x=1;y=\(-3\frac{1}{4}\)
\(\frac{\left(x-y\right)^2+xy}{\left(x+y\right)^2-xy}\)\(\left[1:\frac{x^5+y^5+x^3y^2+x^2y^3}{\left(x^3y^3\right)\left(x^3+y^3+x^2y+xy^2\right)}\right]\)
BT16: Cho đơn thức \(F=\left(-\dfrac{3}{5}xy^2\right)^2.\left(\dfrac{20}{27}x^3y\right)\)
a, Thu gọn đơn thức và tìm bậc của đơn thức F
b, Tính giá trị của biểu thức F biết \(y=-\dfrac{x}{3}\)và x+y=2
Cho x,y là số thực thỏa mãn \(x^2+y^2+xy-3x-3y+3=0\). Chứng minh biểu thức P = \(\left(3x+2y-6\right)^{1010}+\left(x-y+1^{1011}\right)+2021\) có giá trị là một số nguyên
Cho xy = x + y. Tính giá trị của biểu thức A = (x3 + y3 - x3y3)2 + 27x6y6
Cho x+y=xy. Tính giá trị biểu thức: A=(x3+y3-x3y3)3 +27x6y6
Rút gọn rồi tính giá trị của biểu thức tại \(x=\frac{1}{2};y=\frac{1}{3}\)
\(A=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y^2-xy}{x-3y}+\left(\frac{x}{2}-\frac{x^2-xy}{x-2y}\right):\frac{xy+y^2}{2x-4y}\)
Cho x+y=7 và xy=10. Tính giá trị của biểu thức sau:
\(P=\left(x+y\right)\left(x^2+y^2\right)\left(x^3+y^3\right)\)
Cho biểu thức N = \(\left(\dfrac{x^2}{x^2-y^2}+\dfrac{y}{x-y}\right):\dfrac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)
a. Rút gọn N
b. TÍnh giá trị của N biết xy = 1; x + y = 0