Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Admin (a@olm.vn)

Cho \(x,y\)là hai số dương có tổng bằng 1. Chứng minh rằng  \(\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\ge9\).

l҉o҉n҉g҉ d҉z҉
22 tháng 3 2021 lúc 13:47

\(\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)=1+\frac{1}{y}+\frac{1}{x}+\frac{1}{xy}=1+\left(\frac{1}{x}+\frac{1}{y}\right)+\frac{1}{xy}\)

Áp dụng bất đẳng thức Bunyakovsky dạng phân thức ta có :

\(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{1}=4\)(1)

Áp dụng bất đẳng thức AM-GM ta có :

\(xy\le\left(\frac{x+y}{2}\right)^2=\frac{1}{4}\Rightarrow\frac{1}{xy}\ge4\)(2)

Từ (1) và (2) => \(\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)=1+\left(\frac{1}{x}+\frac{1}{y}\right)+\frac{1}{xy}\ge1+4+4=9\left(đpcm\right)\)

Đẳng thức xảy ra <=> x = y = 1/2

Khách vãng lai đã xóa

Các câu hỏi tương tự
Admin (a@olm.vn)
Xem chi tiết
Admin (a@olm.vn)
Xem chi tiết
Admin (a@olm.vn)
Xem chi tiết
Admin (a@olm.vn)
Xem chi tiết
Admin (a@olm.vn)
Xem chi tiết
Admin (a@olm.vn)
Xem chi tiết
Admin (a@olm.vn)
Xem chi tiết
Admin (a@olm.vn)
Xem chi tiết
Admin (a@olm.vn)
Xem chi tiết