Cho x,y,b,d thuộc N* .Chứng minh rằng a/b<c/d thì a/b<x.a+y.c/x.b+y.d<c/d
bài 1 : Cho a thuộc Z , b thuộc N* , n thuộc N* . Chứng minh rằng :
a) Nếu a < b thì \(\frac{a}{b}< \frac{a+n}{b+n}\)
b) Nếu a > b thì \(\frac{a}{b}>\frac{a+n}{b+n}\)
c) Nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}\)
bài 2 : a) Chứng tỏ rằng nếu \(\frac{a}{b}< \frac{c}{d}\)( b > 0,d >0) thì \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
b) Hãy viết ba số hữu tỉ xen giữa \(\frac{-1}{3}\)và \(\frac{-1}{4}\)
Bài 2: a, Tìm x,y,z biết:
b, Cho
Chứng minh rằng:
Bài 3: a, Cho
Chứng minh rằng:
b, Chứng minh rằng nếu thì
Các bạn nhớ giải chính xác nhé
Bài 1: Cho tỉ lệ thức
Tính tỉ số
Bài 2: a, Tìm x,y,z biết:
b, Cho
Chứng minh rằng:
Bài 3: a, Cho
Chứng minh rằng:
b, Chứng minh rằng nếu thì
cho x , y , b , d thuộc N* . chứng minh nếu \(\frac{a}{b}\) < \(\frac{c}{d}\)thì \(\frac{a}{b}\)< \(\frac{xa+yc}{xb+yd}\)< \(\frac{c}{d}\)
Cho 2 số hữu tỉ x=\(\frac{a}{b}\);y=\(\frac{c}{d}\);z=\(\frac{a+c}{b+d}\)
Chứng minh rằng nếu x<y thì x<z<y
Cho 2 số hữu tỉ \(\frac{a}{b},\frac{c}{d}\)
Chứng minh rằng: nếu \(\frac{a}{b}< \frac{c}{d}\)thì\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Bài 1 : a) Tìm số nguyên x ; y sao cho x - 2xy + y = 0
b) Tìm a ; b ; c thuộc Z biết : ab = c ; bc = 4a ; ac = 9b
c) Cho \(\frac{a}{b}=\frac{c}{d}\)Chứng minh rằng : \(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\)
Chứng minh rằng : nếu\(\frac{a}{b}< \frac{c}{d}\left(b,d>0\right)\)thì \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)