\(x^4+y^4=x^4+2x^2y^2+y^4-2x^2y^2=\left(x^2+y^2\right)^2-2x^2y^2\)
=> \(x^4+y^4=\left(a^2-2b\right)^2-2b^2\)
\(=a^4-4a^2b+2b^2\)
\(x^5+y^5=x^5+x^2y^3+x^3y^2+y^5-x^2y^3-x^3y^2\)
\(=\left(x^2+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)-x^2y^2\left(x+y\right)\)
=> \(x^5+y^5=\left(a^2-2b\right)a\left(a^2-3b\right)-b^2a\)
\(=a^5-5a^3b+6b^2a-b^2a\)
\(=a^5-5a^3b+5b^2a\)