Câu 1. Thực hiện phép chia
\(\left(x^3+x^2-2x+3\right):\left(x+3\right)\)
Câu 2. Phân tích đa thức thành nhân tử
\(x^2-xy-4x+2y+4\)
Câu 3. Cho x, y thỏa mãn \(2x^2+y^2+4=4x+2xy\)
TÍnh giá trị của biểu thức\(A=x^{2016}y^{2017}-x^{2017}y^{2016}+36xy\)
Cho biểu thức N = \(\left(\dfrac{x^2}{x^2-y^2}+\dfrac{y}{x-y}\right):\dfrac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)
a. Rút gọn N
b. TÍnh giá trị của N biết xy = 1; x + y = 0
Cho biểu thức N = \(\left(\dfrac{x^2}{x^2-y^2}+\dfrac{y}{x-y}\right):\dfrac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)
a. Rút gọn N
b. TÍnh giá trị của N biết xy = 1; x + y = 0
Rút gọn rồi tính giá trị của biểu thức khi x=1;y=\(-3\frac{1}{4}\)
\(\frac{\left(x-y\right)^2+xy}{\left(x+y\right)^2-xy}\)\(\left[1:\frac{x^5+y^5+x^3y^2+x^2y^3}{\left(x^3y^3\right)\left(x^3+y^3+x^2y+xy^2\right)}\right]\)
Cho x+y=7 và xy=10. Tính giá trị của biểu thức sau:
\(P=\left(x+y\right)\left(x^2+y^2\right)\left(x^3+y^3\right)\)
Cho x + y = 1 . Tính giá trị của biểu thức : H = \(x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(xy+y\right)\)
Rút gọn và tính giá trị của biểu thức tại x = -1,76 và y = 3/25
\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\right]:\frac{x+1}{2x^2+y+2}\)
Rút gọn rồi tính giá trị của biểu thức tại \(x=\frac{1}{2};y=\frac{1}{3}\)
\(A=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y^2-xy}{x-3y}+\left(\frac{x}{2}-\frac{x^2-xy}{x-2y}\right):\frac{xy+y^2}{2x-4y}\)
Cho biểu thức:
\(P=\left(\frac{x^2}{x^2-y^2}+\frac{y}{x-y}\right):\frac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\) (với x\(\ne+-\)y).Giá trị của biểu thức P khi x+y=5 và xy=\(-\frac{1}{2}\)